Analytical Calculation of Parallel Double Excitation and Spoke-type Permanent-magnet Motors; Simplified versus Exact Model
نویسندگان
چکیده
Abstract—This paper deals with the prediction of magnetic field distribution and electromagnetic performances of parallel double excitation and spoke-type permanent magnet (PM) motors using simplified (SM) and exact (EM) analytical models. The simplified analytical model corresponds to a simplified geometry of the studied machines where the rotor and stator tooth-tips and the shape of polar pieces are not taken into account. A 2D analytical solution of magnetic field distribution is established. It involves solution of Laplace’s and Poisson’s equations in stator and rotor slots, airgap, buried permanent magnets into rotor slots and non magnetic region under magnets. A comparison between the results issued from the simplified model with those from exact model (EM) (which represents a more realistic geometry with stator and rotor tooth-tips and the shape of polar pieces) is done to show the accuracy of the simplified geometry on magnetic field distribution and electromagnetic performances (cogging torque, electromagnetic torque, flux linkage, back-EMF, self and mutual inductances). The analytical results are verified with those issued from finite element method (FEM).
منابع مشابه
The Effect of Magnet Width and Iron Core Relative Permeability on Iron Pole Radii Ratio in Spoke-Type Permanent-Magnet Machine: An Analytical, Numerical and Experimental Study
In this paper, we present a mathematical model for determining the optimal radius of the iron pole shape in spoke-type permanent-magnet (PM) machines (STPMM) in order to minimize the pulsating torque components. The proposed method is based on the formal resolution of the Laplace’s and Poisson’s equations in a Cartesian pseudo-coordinate system with respect to the relative permeability effect o...
متن کامل2D Analytical Modeling of Magnetic Vector Potential in Surface Mounted and Surface Inset Permanent Magnet Machines
A 2D analytical method for magnetic vector potential calculation in inner rotor surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in quasi- Cartesian coordinate by using...
متن کاملA Novel Technique on the Analytical Calculation of Open-Circuit Flux Density Distribution in Brushless Permanent-Magnet Motor
Both the cogging and electromagnetic torques depends on the shape of the flux density distribution in the airgap region. A two-dimensional (2-D) analytical method for predicting the open- circuit airgap field distribution in brushless permanent magnet motors, considering the direction of magnetization, i.e., radial or parallel, and the effect of real shape of stator slot-openings is presented i...
متن کاملSemi-Analytical Modeling of Electromagnetic Performances in Magnet Segmented Spoke-Type Permanent Magnet Machine Considering Infinite and Finite Soft-Magnetic Material Permeability
In this paper, we present a semi-analytical model for determining the magnetic and electromagnetic characteristics of spoke-type permanent magnet (STPM) machine considering magnet segmentation and finite soft-material relative permeability. The proposed model is based on the resolution of the Laplace’s and Poisson’s equations in a Cartesian pseudo-coordinate system with respect to the relative ...
متن کاملComparison of the Eccentricity Faults Effects on the Performance of several Toroidal Wounded Axial Flux Permanent Magnet Motors
Eccentricity fault is one the most common fault types of disk-type permanent magnet machines, which could lead to devastating effects. Unfortunately, most of the previous works have studied this fault and its detection techniques for slotted structure with common winding. Therefore, in this paper, the effects of eccentricity faults on the performance of single-sided slotted, single-sided slotle...
متن کامل